Circadian timing of metabolism in animal models and humans.

نویسندگان

  • C Dibner
  • U Schibler
چکیده

Most living beings, including humans, must adapt to rhythmically occurring daily changes in their environment that are generated by the Earth's rotation. In the course of evolution, these organisms have acquired an internal circadian timing system that can anticipate environmental oscillations and thereby govern their rhythmic physiology in a proactive manner. In mammals, the circadian timing system coordinates virtually all physiological processes encompassing vigilance states, metabolism, endocrine functions and cardiovascular activity. Research performed during the past two decades has established that almost every cell in the body possesses its own circadian timekeeper. The resulting clock network is organized in a hierarchical manner. A master pacemaker, located in the suprachiasmatic nucleus (SCN) of the hypothalamus, is synchronized every day to the photoperiod. In turn, the SCN determines the phase of the cellular clocks in peripheral organs through a wide variety of signalling pathways dependent on feeding cycles, body temperature rhythms, oscillating bloodborne signals and, in some organs, inputs of the peripheral nervous system. A major purpose of circadian clocks in peripheral tissues is the temporal orchestration of key metabolic processes, including food processing (metabolism and xenobiotic detoxification). Here, we review some recent findings regarding the molecular and cellular composition of the circadian timing system and discuss its implications for the temporal coordination of metabolism in health and disease. We focus primarily on metabolic disorders such as obesity and type 2 diabetes, although circadian misalignments (shiftwork or 'social jet lag') have also been associated with the aetiology of human malignancies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unwinding the Molecular Basis of Interval and Circadian Timing

Neural timing mechanisms range from the millisecond to diurnal, and possibly annual, frequencies. Two of the main processes under study are the interval timer (seconds-to-minute range) and the circadian clock. The molecular basis of these two mechanisms is the subject of intense research, as well as their possible relationship. This article summarizes data from studies investigating a possible ...

متن کامل

Matching Meals to Body Clocks—Impact on Weight and Glucose Metabolism

The prevalence of type 2 diabetes continues to rise worldwide and is reaching pandemic proportions. The notion that this is due to obesity, resulting from excessive energy consumption and reduced physical activity, is overly simplistic. Circadian de-synchrony, which occurs when physiological processes are at odds with timing imposed by internal clocks, also promotes obesity and impairs glucose ...

متن کامل

Circadian regulation of metabolic homeostasis: causes and consequences

Robust circadian rhythms in metabolic processes have been described in both humans and animal models, at the whole body, individual organ, and even cellular level. Classically, these time-of-day-dependent rhythms have been considered secondary to fluctuations in energy/nutrient supply/demand associated with feeding/fasting and wake/sleep cycles. Renewed interest in this field has been fueled by...

متن کامل

Neural Mechanisms of Circadian Regulation of Natural and Drug Reward

Circadian rhythms are endogenously generated near 24-hour variations of physiological and behavioral functions. In humans, disruptions to the circadian system are associated with negative health outcomes, including metabolic, immune, and psychiatric diseases, such as addiction. Animal models suggest bidirectional relationships between the circadian system and drugs of abuse, whereby desynchrony...

متن کامل

Chronobiology of Aging: A Mini-Review.

Aging is generally associated with weakening of the circadian system. The circadian amplitude is reduced and the circadian acrophase becomes more labile, tending to occur earlier with advancing age. As originally noted by Franz Halberg, similar features are observed in the experimental laboratory after bilateral lesioning of the suprachiasmatic nuclei, suggesting the involvement of clock genes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of internal medicine

دوره 277 5  شماره 

صفحات  -

تاریخ انتشار 2015